Learning to Control an Unstable System with Forward Modeling

نویسندگان

  • Michael I. Jordan
  • Robert A. Jacobs
چکیده

The forward modeling approach is a methodology for learning control when data is available in distal coordinate systems. We extend previous work by considering how this methodology can be applied to the optimization of quantities that are distal not only in space but also in time. In many learning control problems, the output variables of the controller are not the natural coordinates in which to specify tasks and evaluate performance. Tasks are generally more naturally specified in "distal" coordinate systems (e.g., endpoint coordinates for manipulator motion) than in the "proximal" coordinate system of the controller (e.g., joint angles or torques). Furthermore, the relationship between proximal coordinates and distal coordinates is often not known a priori and, if known, not easily inverted. The forward modeling approach is a methodology for learning control when training data is available in distal coordinate systems. A forward model is a network that learns the transformation from proximal to distal coordinates so that distal specifications can be used in training the controller (Jordan & Rumelhart, 1990). The forward model can often be learned separately from the controller because it depends only on the dynamics of the controlled system and not on the closed-loop dynamics. In previous work, we studied forward models of kinematic transformations (Jordan, 1988, 1990) and state transitions (Jordan & Rumelhart, 1990). In the current paper, Learning to Control an Unstable System with Forward Modeling 325 we go beyond the spatial credit assignment problems studied in those papers and broaden the application of forward modeling to include cases of temporal credit assignment (cf. Barto, Sutton, & Anderson, 1983; Werbos, 1987). As discussed below, the function to be modeled in such cases depends on a time integral of the closed-loop dynamics. This fact has two important implications. First, the data needed for learning the forward model can no longer be obtained solely by observing the instantaneous state or output of the plant. Second, the forward model is no longer independent of the controller: If the parameters of the controller are changed by a learning algorithm, then the closed-loop dynamics change and so does the mapping from proximal to distal variables. Thus the learning of the forward model and the learning of the controller can no longer be separated into different phases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm

The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...

متن کامل

An Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set

Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...

متن کامل

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

Type-2 Fuzzy Hybrid Expert System For Diagnosis Of Degenerative Disc Diseases

One-third of the people with an age over twenty have some signs of degenerated discs. However, in most of the patients the mere presence of degenerative discs is not a problem leading to pain, neurological compression, or other symptoms. This paper presents an interval type-2 fuzzy hybrid rule-based system to diagnose the abnormal degenerated discs where pain variables are represented by interv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1989